2020. április 30., csütörtök

Távoktatás: Forgásfelületek áthatása (2.rész)

Letölthető anyagok:

Ezen a gyakorlaton a forgásfelületek áthatásának szerkesztésével foglalkozunk olyan esetekben, amikor a két felület forgástengelye metsző vagy kitérő helyzetben van egymáshoz képest. A módszerek és ötletek is alkalmazkodnak ezekhez a helyzetekhez, bár az is igaz, teljesen általános helyzetekkel nem fogunk találkozni.
Pl. A forgástengelyek egymásra merőleges helyzetben lesznek. Ez egy igen fontos könnyítés, mert így egy fekvő helyzetben lévő henger vízszintes síkokkal is könnyen szerkeszthető metszeteket ad.
A módszerünk:
SZELETELÉS !!!
A kurzus végén már nem azon kell gondolkodni, hogy mi a szeletelés, hanem alkalmazni azt SOKSZOR. Ezzel lehet biztosítani, hogy nagyon közel lesznek megszerkesztett pontok, amiket össze lehet/kell kötni. De látatlanban nem lehet megtanulni azt, hogy milyen is lesz egy áthatási vonal futása, ezért lássunk néhány példát:
Ez a két henger egyenlő sugarú és a tengelyeik metsző helyzetben vannak. Alapban bárhogy elhelyezkedhetnek a térben, ezeken a képeken "fekvő" helyzetben vannak. Vagyis így, ahogy vannak, le lehet tenni őket az asztalra és egy lappal le lehet fedni őket. A geometria nyelvén ez azt jelenti, hogy alulról és felülről ugyanaz a síkpár érinti mindkét hengert → a legalsó és a legfelső alkotók metszéspontjaiban  a hengerek érintik egymást, és az árhatási vonal szétesik két ellipszisre. Ezek vonala a fenti képeken nagyon szépen kirajzolódik. Az ellipszisek síkjai egymásra merőlegesek, felülről nézve X-et formáznak. Ezzel a helyezettel még fogunk találkozni a Boltozatok témánál.

Ha az előbbi helyzeten csak annyit változtatunk, hogy csökkentjük a sugarát, akkor a fentebb említett érintkezést alul is és felül is elrontjuk. Egyszerűen a sárga henger vastagabb, a szürke vékonyabb és csak amiatt marad meg a levegőben, mert átdugtuk a sárga hengeren.
Ilyenkor az áthatásvonala két különálló zárt vonalból áll. Ezek szimmetrikusan helyezkednek el és kb olyasmi tekeredésük van, mint a Pringles csipsz peremének.
A peremet kell figyelni, és nem a csipsz felületét! A lényeg, hajlása van felfelé és lefelé is.

Hogyan érdemes szeletelni?


Az előbbi esetekben a forgástengelyek síkja mindkét felületnek szimmetriasíkja. Egy ilyen szeletelő síkban a hengerekből egy-egy alkotópárt találunk, melyek összesen 4 metszéspontot határoznak meg.
 Vagyis a teendő: minél többször felvenni ilyen szeletelő síkot és négyesével megszerkeszteni a pontokat. Gyors és egyszerű eljárás! A munkafüzet 69. oldalán a vastagabb henger álló helyzetben van és a vékonyabb vízszintesen fúrja át. Ez azt jelenti, hogy ott a szeletelősíkjaink függőleges helyzetűek leszek, egészen pontosan a K2-velpárhuzamosak.
Az előbbi hengereket szeletelhetjük az egyik tengelyre merőlegesen is. Ekkor az egyik hengerből paralel kört, a másikból alkotópárt metszünk. Az egy szeletelősíkban lévő metszetek közös pontjai kijelölhetők. Valahogy így: 
Ez is gyors módszer, mint ahogy a képen is látszik, egy lépésben 4 pontot tudunk előállítani.

Ha a tengelyeket a metsző helyzetből elmozdítjuk, akkor kitérő tengelyeket kapunk. Kitérő tengelyek esetén általában az egyik tengelyre merőlegesen érdemes szeletelni. Ebben a szemléltető példában egy fekvő henger és függőleges tengelyű kúp került áthatásra. A szerkesztést megkönnyíti, ha a hengert vetítő helyzetűvé transzformáljuk. És ebben a helyzetben a szeletelést vízszintes síkokkal érdemes elvégezni, mert akkor a kúpból kimetszett kört két hengeralkotóval kell összemetszeni.

A 72. oldal feladatában a henger a K2 képsíkra merőleges, így nem kell transzformálni.
Itt a szerkesztés lépései talán jobban látszanak:
Találtam egy galériát, ahol a 4 évvel ezelőtti gyakorlaton a táblaképeket megőriztem. Így a  szerkesztés néhány lépése követhető itt: https://drive.google.com/open?id=0B_XPtCdn7YKzcnNpdXpIMXRjSDQ

További segédanyag:

  • Részlet Pethes Endre: 222 ábrázoló geometria feladat c. könyvéből. (XI. fejezet)
  • gyakorló feladatok
  • Illetve a jobb oldalon ajánlott irodalomból az Ábrázoló geometria szemléletesen című könyv megfelelő fejezete
  • hallgatói munkák

 Vendégposztok: 

    Nincsenek megjegyzések:

    Megjegyzés küldése