Forrás |
Egy geometriai kézműveskedéssel kívánok kellemes karácsonyi ünnepeket és boldog új évet!
A szabályos poliéderek fűzési leírásai letölthetők: INNEN
(Forrás:bme.hu) |
Az áthatási témakör 3. feladata két hasáb áthatása lesz, melyeket ez az ábra szemléltet:
Itt
most észrevehető, hogy az egyik hasáb áll a vízszintes síkon, míg a
másik "fekvő" helyzetben van, azaz az oldalélei vízszintesek. A
bejegyzés ad néhány instrukciót a metszéspontok és metszésvonalak
szerkesztéséhez.
A fekvő helyzetű hasáb vízszintes éleivel el kell metszeni az álló
hasáb oldallapjait. Ezek a metszéspontok az 1. képen vehetők észre. Most
két él metsz bele az álló hasábba, élenként 2-2 metszéspontot fogunk
kapni.A 2. képek rendezővel szerkeszthetők. (A feladat vetítő sík
metszése egyenessel.)
Letölthető anyagok:
A témakör 2. feladatának teendőit mutatom be részletesebben. A hasáb
bele van tolva a gúlába, se balról, se jobbról nem
szakítja meg a kontúrt. Ha a kék nyilakat figyeljük, akkor 4 olyan
helyet látunk, ahol a gúlaélek a hasáb oldallapjait metszik.
És végül az összekötés szabálya: Két pont a hálóban akkor köthető össze, ha ugyanannak a kis négyzetnek az oldalán van. Így, ha egy pontból elindulunk, akkor oda vissza fogunk érni. Ha vannak még kimaradó pontok,akkor azok legalább hárman lesznek! Most két teljes "körünk"van.
Ezen a héten hasábokat és gúlákat fogunk metszeni egymással. Nem minden
helyzettel foglalkozunk, csak azokkal, amikor a hasáb oldalélei képsíkra
merőleges helyzetűek.
De először nézzük általánosabban a feladatot. Az alábbi képeken egy álló
helyzetű gúla és egy fekvő helyzetű hasáb összemetsződését látjuk. A
színekkel jól megjeleníthető, hogy hogyan találkoznak egymással.
Instrukciók:
Ebben a témakörben síklapú testek közül a hasábokkal és a gúlákkal kezdünk ismerkedni. A (többnyire az első képsíkon álló) testeket egyenesekkel és síkokkal (síklapokkal) fogjuk elmetszeni.
2016-ban nem sikerült jól a táblai ábrám, mert a sík csak az oldaléleket metszette. Érdemes összehasonlítani a fenti, 2020-as változattal! |
Az ábrázolási rendszerünk meghatározza, hogy egy tárgyat, alakzatot
honnan nézhetünk. A Monge-féle kétképsíkos eljárásban mindig a képsíkra
merőleges irányból készült vetületekkel találkozunk. Felmerülhet a
kérdés: Jó ez minden esetben?
A válasz természetesen nem. Előfordulhat, hogy a könnyen szerkeszthető
nézet helyett inkább a szemléletes mellett döntenénk. De hogyan
juthatunk el az egyik képből a másikba? Ez az út a képsíkrendszer
transzformációja: amely röviden fogalmazva újabb vetület(ek)
szerkesztését jelenti az előző kép(ek) felhasználásával.
Amikor azt tapasztaljuk, hogy egyik megadott képen sem látszik
szemléletesen az ábrázolt alakzat, akkor újabb irányból kellene
vetületet szerkeszteni róla. Ebben a témakörben éppen ennek a
szerkesztésnek a lépéseit fogjuk megtanulni.
Ezt a szerkesztést kiváltja a modellező programok az a funkciója,
mellyel a modell szabadon forgatható, pontosabban a nézőpont
folyamatosan változtatható lesz.
Egy ide kapcsolódó példa két sík szögének meghatározása, melyhez transzformációt fogunk használni. Megfelelő irányból a keresett szög a transzformáció végén leolvasható:
A kocka után ez a csonkolt kocka lesz a feladat főszereplője:
A bejegyzés végén található a megoldás néhány lépése egy korábbi tanévben készített fotókkal szemléltetve.