2021. február 24., szerda

Képsíkrendszer transzformációja (új nézet szerkesztése)

Az ábrázolási rendszerünk meghatározza, hogy egy tárgyat, alakzatot honnan nézhetünk. A Monge-féle kétképsíkos eljárásban mindig a képsíkra merőleges irányból készült vetületekkel találkozunk. Felmerülhet a kérdés: Jó ez minden esetben?
A válasz természetesen nem. Előfordulhat, hogy a könnyen szerkeszthető nézet helyett inkább a szemléletes mellett döntenénk. De hogyan juthatunk el az egyik képből a másikba? Ez az út a képsíkrendszer transzformációja: amely röviden fogalmazva újabb vetület(ek) szerkesztését jelenti az előző kép(ek) felhasználásával.


Letölthető anyagok:

Amikor azt tapasztaljuk, hogy egyik megadott képen sem látszik szemléletesen az ábrázolt alakzat, akkor újabb irányból kellene vetületet szerkeszteni róla. Ezen a héten éppen ennek a szerkesztésnek a lépéseit fogjuk megtanulni.
Ezt a szerkesztést kiváltja a modellező programok az a funkciója, mellyel a modell szabadon forgatható, pontosabban a nézőpont folyamatosan változtatható lesz.

Egy ide kapcsolódó példa két sík szögének meghatározása, melyhez transzformációt fogunk használni. Megfelelő irányból a keresett szög a transzformáció végén leolvasható:

A kocka után ez a csonkolt kocka lesz a feladat főszereplője:

Táblaképek: A gyakorlaton a szerkesztés folyamatát is sikerült megörökíteni (2019):


 

2021. február 17., szerda

Metszési feladatok 2. és 3. rész (síkok metszése)

Két gyakorlatunk témája a két sík metszése, méghozzá olyan esetekben, amikor mindkét megadott sík általános helyzetű. A keresett metszésvonal két pontjával egyértelműen meghatározható. Így a következő megoldási menetet követjük:

  • Az egyik sík vonalai (határvonalai) közül kiválasztunk egyet, mellyel a másik síkot el fogjuk metszeni. Ezzel a két sík egy közös pontját előállítjuk.
  • Az előbbi lépést még egyszer végrehajtjuk.
  • A kapott két pontot összekötve megkapjuk a síkok metszésvonalát.
  • Láthatóság szerinti kihúzás: a síkokat síklapoknak képzeljük és megkeressük,  hogy az egyes területeken melyik sík takarja a másikat.

Fontos megjegyezni, hogy alapvetően a síklapok határvonalai közül tetszőlegesen választhatunk a közös pontok meghatározásához. Gyakorlatilag az okozhat problémát, hogy sok esetben a szerkesztés nem fér ki a megadott terület, vagy papírlapra. Ilyenkor érdemes újabb egyenessel próbálkozni. A gyakorlaton szó lesz arról is, hogy hogyan érdemes "jó" egyenest választani.


A síklapok összemetsződésének egyik példája a fenti ábrán látható.Itt most a szerkesztővonalak nincsenek feltüntetve, de a keletkezett metszésvonal igazából csak egy szakaszként jelenik meg. Itt  most az ábra azt mutatja, mintha a két bemetszett lapot csak összecsúsztatnánk, hogy egymásba kapjanak, ahhoz hasonlóan, mint a korong alakú építőjáték elemi csatlakoznak.

Egy másik esetben a kész ábra ahhoz hasonló, mint amikor az egyik lapon egy hasítékot készítünk, hogy ott a másik síklapot átcsúsztassuk, vagy csak egy részét belecsúsztassuk. Ilyesmit szemléltet a jobb oldali képen látható szalag, melyen van egy elszegett rés, és a szalag végei azon átcsúsztathatók. Persze ilyen szalagot nem fogunk ábrázolni, de a lényeget jól szemlélteti.

Az órán használtuk a fedőegyenes-módszert a 2. képről indítva. Csak azért, hogy erről is legyen valamilyen segédábra, egy interaktív verziót mutatok:

 

Röviden a következőt kell figyelni: A ciklámen síklapot szeretnénk metszeni a zöld egyenessel. A síklap képe a 2. képsíkon látható háromszöglap, az egyenes képét a halványkék sík rajzolja ki.  A halványkék sík a zöld egyenes a K2-re vetítő sík, amely a térben elmetszi a háromszög síkját, én azon kirajzolja a fekete egyenest. Ha forgatjuk az ábrát, akkor azt tapasztaljuk, hogy a zöld és fekete egyeneseknek közös a 2.képük (szemből nézet), de minden más helyzetből metszőnek látjuk azokat. Mutatom, hogy hogyan néznek ki, amikor csak a vetületeket látjuk (tulajdonképpen a szerkesztést látjuk rendező vonalak nélkül):

 Letölthető anyagok:

Táblai feladatmegoldások a korábbi évekből:

További segédanyag