2022. március 6., vasárnap

Síklapú testek áthatása - 2. rész

  Felhasznált korábbi ismeretek:

  • Sík és egyenes döféspontjának szerkesztése. Az elemek speciális helyzetének felismerése segíti, és gyorsítja a szerkesztést.
  • Síkok metszésvonala. Két közös pont által megadva, speciális helyzetekben is.
  • A gúla alaplappal párhuzamos metszetei egymáshoz hasonlóak, ha a metsző sík az alaphoz van közelebb, akkor a metszet nagyobb, ha a csúcsponthoz van közelebb, akkor a metszet egyre kisebb. 
  • Síkra illeszkedő egyenes: a sík körvonalát két pontban metszi, és ezt a rendezők is mutatják.
Emlékeztetőül a tevékenységlista:
  • Az egyik test éleivel a másik testet el kell metszeni. Célszerű a könnyen észrevehetőekkel kezdeni! Ha egy él belemetsz a másik testbe, akkor 2 metszéspontot keresünk függetlenül attól, hogy látszanak-e.
  • A másik test éleivel az első test lapjait kell metszeni, ha egy él belemetsz a másikba, akkor itt is élenként 2-2 metszésponttal kell számolni.
  • Az összekötési sorrend meghatározása: az alapszabály az, hogy mindkét testkörüljárásának meg kell felelni. Ha egy pontból elindulunk, akkor oda mindig visszavisz az áthatási töröttvonal. Ehhez segédábrát fogunk készíteni, de ha valaki meglátja a lényeget, akkor segédábra nélkül is csinálhatja.
  • A láthatóság jelölése vagy aszerint, hogy a két test egyetlen testté válik, vagy úgy, hogy ez egyik testet eltávolítjuk és ezzel a másik testen csonkolást hajtunk végre.

Letölthető anyagok/Segédanyagok:

31. oldal feladata:

Forgatható modellek: https://abrazolottanitok.blogspot.com/2019/11/hasab-es-gula-athatasa.html

A témakör Bevezető feladatához képest a hasáb sokkal jobban bele van tolva a gúlába, se balról, se jobbról nem szakítja meg a kontúrt. Ha a kék nyilakat figyeljük, akkor 4 olyan helyet látunk, ahol a gúlaélek a hasáb oldallapjait metszik.

Ha a zöld nyilakat tekintjük, akkor a hasáb összes oldaléle belemetsz a gúlába, és így mindegyiket 2-2 metszéspont lesz majd. Egy kis gyors matek: 4 + 8 = 12 pontot kell megszerkeszteni.
A diasor leírásában a 2. és 3. lépés mutatja a hasábélekkel való metszést. Most is a hasáblapokat megnyújtjuk,hogy jó nagyon legyenek és ezzel készítünk egy-egy ferde metszetet a gúlából. Ne felejtsük el, hogy a ferde metszet már nem mutat szabályosságot, sőt az alsóbb esetben még az alapsíkban is belemetsz.


Ami nehezen szokott menni, a pontok összekötésének a sorrendje
Ehhez egy olyan segédábrát készítünk melyen mindkét test oldalsó felületeit egymásra fektetjük. Kezdjük a hasábbal! Ha a hasáb palást részét egy él mentén felvárjuk, akkor a vágás vonala a kiterítés bal és jobb oldalán is megjelenik. 

Vagyis a hasáb négy oldallapja négy sávval (azaz 5 egyenessel) szimbolizálható. Nekünk most a méretek nem kellenek,csak a sávok.
A gúla esetén is hasonló történik, azzal a különbséggel hogy oldallapok kihajtogatásával egy háromszögsorozatot kapunk. Most sem a méretek, sem a formák nem fontosak, ezért minden háromszöglap helyett sávokká formázzuk azokat. Így a négy egymáshoz csatlakozó háromszög helyett négy sávot jelenítünk meg. Itt is fontos, hogy az az él,ami mentén felvágtuk a palástot, mindkét szélen megjelenik. A vonalak egy körüljárásnak megfelelően követik egymást, hogy biztosan egy lapot jelenthessenek.
És végül tegyük egymásra ezt a két sávrendszert:
Mire lesz ez jó nekünk? Minden megszerkesztett pontot bejelölünk majd, kétféle dolgot kell megnézni: melyik élen van és melyik lapon (melyik két egyenes között) helyezkedik el. Mutatom az első pontnál, hogy mire kell figyelni. Az 1-es pont a GD oldalél és az ab lap metszéspontja. Ezt a tényt úgy érdemes átfogalmazni, hogy a GD élen van az ab egyenesek között. Stb. egyesével minden pont belekerül. Ezt minden lépésnél mutatom a diában.

Mi történik akkor, ha egy olyan éllel metszünk, amely mentén a palástot felvágtuk? Olyanra gondolok, mint a mostani példában az a egyenes. Akkor az a egyenes kétszer szerepel az összekötési ábrában is, így a pontot is kétszer kell jelölni mindkét oldalon: 

És végül az összekötés szabálya: Két pont a hálóban akkor köthető össze, ha ugyanannak a kis négyzetnek az oldalán van. Így, ha egy pontból elindulunk, akkor oda vissza fogunk érni. Ha vannak még kimaradó pontok,akkor azok legalább hárman lesznek! Most két teljes "körünk"van.
A láthatósághoz a vagy egy összeállítás Segédábrákból (5.-7. oldalak), melyekből egyet mutatok mintaként:
 
 

34. oldal feladata:

Tevékenységlista erre a feladatra megfogalmazva:
  • A fekvő helyzetű hasáb vízszintes éleivel el kell metszeni az álló hasáb oldallapjait. Ezek a metszéspontok az 1. képen vehetők észre. Most két él metsz bele az álló hasábba, élenként 2-2 metszéspontot fogunk kapni.A 2. képek rendezővel szerkeszthetők. (A feladat vetítő sík metszése egyenessel.)

  • Most az álló test éleivel kell belemetszeni  a fekvő hasábba. Két ilyen függőleges élt látunk: az 1-es és a 2-est. Mindkét egyenesen 2-2 metszéspontot kapunk.
        Ehhez a két egyenesre illeszthető síkot hívhatjuk segítésül. Az állóhasáb 1-2-es oldallapját
balra-jobbra meghosszabbítjuk, hogy a fekvőhasábot kettévághassa. Ezt szemléleti ez az ábra:


A függőleges élek és a kék hasáb metszetének közös pontjai kellenek.
  • Az összekötési sorrend meghatározása: az alapszabály az, hogy mindkét testkörüljárásának meg kell felelni. Ha egy pontból elindulunk, akkor oda mindig visszavisz az áthatási töröttvonal. Ehhez segédábrát fogunk készíteni, de ha valaki meglátja a lényeget, akkor segédábra nélkül is csinálhatja. Fontos, hogy a fenti forgatható ábrán már néhány összeköttetés látható!
  • A láthatóság jelölése vagy aszerint, hogy a két test egyetlen testté válik, vagy úgy, hogy ez egyik testet eltávolítjuk és ezzel a másik testen csonkolást hajtunk végre.
További segítség:

  • Solidworks-ben készült modell  (tabló, 3 oldalon, különböző helyzetekben mutatja a egyesítést, az egyik hasáb eltávolítását, és a közös részt.)

  • Megoldott feladat, amely nagyon hasonlít a mostanihoz:
 
 

Nincsenek megjegyzések:

Megjegyzés küldése