2021. október 29., péntek

Transzformációs feladat (2021)

 A tegnapi gyakorlaton készült táblaképek:

Ezen a képen készültünk el az oldalnézettel, melyet az x,14 tengelyre történő transzformálással kaptunk. A bal sarokban lészik a szemlélő pozíciója, amikor a IV-es kép láthatóságát rajzoltuk. Ez alapján a a szemlélőhöz közel éppen a vagdosott rész van, míg a 13-14-es pontokat összekötő él van leghátul, így az takarásban van:

 A következő képen már az V-ös kép is elkészült, de még nem jelöltük a láthatóságot. A kapcsos zárójel mutatja, hogy mely adatot kell másolni az újabb képre. Pl. az 1' és x1,4 tengely távolsága és az 1 V-s képe és az x4,5 tengely távolsága fog megegyezni.
(Amikor elkészültünk az alakzat IV-es képével, már nincs szükség a 2. képre, azaz a szemből nézetre. Erről a képről átmásoltunk minden magassági adatot a IV-es képre. Ezen a képen már letöröltem a felesleges 2. képet.)

És végül az utolsó képen a láthatóságot is jelöltük. Az V. kép láthatóságához a szemlélőt a IV-es kép "fölé" kell helyeznünk, látszik is a kép felső szélén. A szemlélőtől legtávolabbi pont a 15-s, így az V. képen a 15-be futó élek takart vonalak.  Ezen kívül takart vonal még a 7-12.


2021. október 27., szerda

Gúlák és hasábok metszése egyenessel, síkkal (2021)

A következő témakörben síklapú testek közül a hasábokkal és a gúlákkal kezdünk ismerkedni. A (többnyire az első képsíkon álló) testeket egyenesekkel és síkokkal (síklapokkal) fogjuk elmetszeni.

Ehhez nem kell mást ismerni, mint a korábbiakban megtanult döféspont és metszésvonal szerkesztést. Az elemek speciális helyzetének felismerése segíti, és gyorsítja a szerkesztést. A feladatok azért tűnnek nehezebbnek, mert egy ábrában több egyenes és több sík szerepel, és el kell igazodnunk közöttük. Most az eddigieknél is jobban kell használnunk a képzelőerőnket.

Forgatható modellek:

  Interaktív ábra (GeoGebra)

A GeoGebra oldalán megjelenő munkalapok bizonyos adatai a csúszkákkal szabadon változtathatóak. Az egér bármely gombjának nyomva tartása mellett az egér mozgatásával a modell forgatható.

Letölthető anyagok:

Táblakép (2020. 11. 04.)
A képre kattintva nagyobb méretben is látszik.

Néhány vázlat:

2016-ban nem sikerült jól a táblai ábrám, mert a sík csak
az oldaléleket metszette. Érdemes összehasonlítani
a fenti, 2020-as változattal!

  • A 34. oldal felső feladata éppen azt akarja megmutatni, hogy ha eltérünk a nagyon tankönyvi hasáboktól és gúláktól azzal, hogy az alapjukat "megcsipkézzük", azaz konkáv alakzatot választunk, akkor több metszéspont is lehetséges. A munkafüzet feladata azért egyszerű, mert a hasáb oldallapjai függőleges helyzetűek, így az egyenessel alkotott közös pontok látszanak az 1. képen.
    A gúlás eset már nem került be a munkafüzetbe, de érdemes megnézni, hogy itt úgy képzeljük, hogy az egyenes vonalában van egy Σ-val jelölt sík, amely egy kissé ferde metszetet készít a gúlából. Ez a metszet az 1. képen összemetsződik az egyenessel négy pontban. Mindkét képen ezek látható lapon keletkeztek, így nyomon lehet követni, ahogy az egyenes ki-be járkál a gúlából. 
  •  Ennél a feladatnál a gúla a csúcsára van állítva, így annak érdekében,hogy a lehető legtöbb részletet lássuk a síklappal való metszésből a tetején lévő négyzetlapot eltávolítjuk. Ez a metszést nem befolyásolja, de most láthatóvá válik a síklap középső része, amely a gúla belsejében van.

További segédanyag 

 

2021. október 13., szerda

A képsíkrendszer transzformációja (2021)

Az ábrázolási rendszerünk meghatározza, hogy egy tárgyat, alakzatot honnan nézhetünk. A Monge-féle kétképsíkos eljárásban mindig a képsíkra merőleges irányból készült vetületekkel találkozunk. Felmerülhet a kérdés: Jó ez minden esetben?
A válasz természetesen nem. Előfordulhat, hogy a könnyen szerkeszthető nézet helyett inkább a szemléletes mellett döntenénk. De hogyan juthatunk el az egyik képből a másikba? Ez az út a képsíkrendszer transzformációja: amely röviden fogalmazva újabb vetület(ek) szerkesztését jelenti az előző kép(ek) felhasználásával.

Amikor azt tapasztaljuk, hogy egyik megadott képen sem látszik szemléletesen az ábrázolt alakzat, akkor újabb irányból kellene vetületet szerkeszteni róla. Ebben a témakörben éppen ennek a szerkesztésnek a lépéseit fogjuk megtanulni.
Ezt a szerkesztést kiváltja a modellező programok az a funkciója, mellyel a modell szabadon forgatható, pontosabban a nézőpont folyamatosan változtatható lesz.

Egy ide kapcsolódó példa két sík szögének meghatározása, melyhez transzformációt fogunk használni. Megfelelő irányból a keresett szög a transzformáció végén leolvasható:

A kocka után ez a csonkolt kocka lesz a feladat főszereplője:

A bejegyzés végén található a megoldás néhány lépése egy korábbi tanévben készített fotókkal szemléltetve.

Letölthető anyagok:

Segédanyagok, feladatok:

  • Gondolkodjunk el azon, hogy milyen testeknek lehet a vetülete szemből nézve is, és felülről nézve is négyzet? Milyen oldalnézetek lehetségesek?
  • Feladatok gyakorlásra
  • Táblaképek 2017-ből Ebből egy ízelítő a végső állapotról:

 

2021. október 5., kedd

Metszési feladatok 2. (2021)

Ezen a héten már inkább a két sík metszésére koncentrálunk, méghozzá olyan esetekben, amikor mindkét megadott sík általános helyzetű. A keresett metszésvonal két pontjával egyértelműen meghatározható. Így a következő megoldási menetet követjük:

  • Az egyik sík vonalai (határvonalai) közül kiválasztunk egyet, mellyel a másik síkot el fogjuk metszeni. Ezzel a két sík egy közös pontját előállítjuk.
  • Az előbbi lépést még egyszer végrehajtjuk.
  • A kapott két pontot összekötve megkapjuk a síkok metszésvonalát.
  • Láthatóság szerinti kihúzás: a síkokat síklapoknak képzeljük és megkeressük,  hogy az egyes területeken melyik sík takarja a másikat.

Fontos megjegyezni, hogy alapvetően a síklapok határvonalai közül tetszőlegesen választhatunk a közös pontok meghatározásához. Gyakorlatilag az okozhat problémát, hogy sok esetben a szerkesztés nem fér ki a megadott terület, vagy papírlapra. Ilyenkor érdemes újabb egyenessel próbálkozni. A gyakorlaton szó lesz arról is, hogy hogyan érdemes "jó" egyenest választani.


A síklapok összemetsződésének egyik példája a fenti ábrán látható.Itt most a szerkesztővonalak nincsenek feltüntetve, de a keletkezett metszésvonal igazából csak egy szakaszként jelenik meg. Itt  most az ábra azt mutatja, mintha a két bemetszett lapot csak összecsúsztatnánk, hogy egymásba kapjanak, ahhoz hasonlóan, mint a korong alakú építőjáték elemi csatlakoznak.

Egy másik esetben a kész ábra ahhoz hasonló, mint amikor az egyik lapon egy hasítékot készítünk, hogy ott a másik síklapot átcsúsztassuk, vagy csak egy részét belecsúsztassuk. Ilyesmit szemléltet a jobb oldali képen látható szalag, melyen van egy elszegett rés, és a szalag végei azon átcsúsztathatók. Persze ilyen szalagot nem fogunk ábrázolni, de a lényeget jól szemlélteti.

Az órán használtuk a fedőegyenes-módszert a 2. képről indítva. Csak azért, hogy erről is legyen valamilyen segédábra, egy interaktív verziót mutatok:

 

Röviden a következőt kell figyelni: A ciklámen síklapot szeretnénk metszeni a zöld egyenessel. A síklap képe a 2. képsíkon látható háromszöglap, az egyenes képét a halványkék sík rajzolja ki.  A halványkék sík a zöld egyenes a K2-re vetítő sík, amely a térben elmetszi a háromszög síkját, én azon kirajzolja a fekete egyenest. Ha forgatjuk az ábrát, akkor azt tapasztaljuk, hogy a zöld és fekete egyeneseknek közös a 2.képük (szemből nézet), de minden más helyzetből metszőnek látjuk azokat. Mutatom, hogy hogyan néznek ki, amikor csak a vetületeket látjuk (tulajdonképpen a szerkesztést látjuk rendező vonalak nélkül):

 Letölthető anyagok:

Táblai feladatmegoldások a korábbi évekből:

További segédanyag