2020. október 24., szombat

Gúlák és hasábok metszése egyenessel, síkkal

A következő két héten síklapú testek közül a hasábokkal és a gúlákkal kezdünk ismerkedni. A (többnyire az első képsíkon álló) testeket egyenesekkel és síkokkal (síklapokkal) fogjuk elmetszeni.

Ehhez nem kell mást ismerni, mint a korábbiakban megtanult döféspont és metszésvonal szerkesztést. Az elemek speciális helyzetének felismerése segíti, és gyorsítja a szerkesztést. A feladatok azért tűnnek nehezebbnek, mert egy ábrában több egyenes és több sík szerepel, és el kell igazodnunk közöttük. Most az eddigieknél is jobban kell használnunk a képzelőerőnket.

Forgatható modellek:

  Interaktív ábra (GeoGebra)

A GeoGebra oldalán megjelenő munkalapok bizonyos adatai a csúszkákkal szabadon változtathatóak. Az egér bármely gombjának nyomva tartása mellett az egér mozgatásával a modell forgatható.

Letölthető anyagok:

Táblakép (2020. 11. 04.)
A képre kattintva nagyobb méretben is látszik.

Néhány vázlat:

2016-ban nem sikerült jól a táblai ábrám, mert a sík csak
az oldaléleket metszette. Érdemes összehasonlítani
a fenti, 2020-as változattal!

  • A 34. oldal felső feladata éppen azt akarja megmutatni, hogy ha eltérünk a nagyon tankönyvi hasáboktól és gúláktól azzal, hogy az alapjukat "megcsipkézzük", azaz konkáv alakzatot választunk, akkor több metszéspont is lehetséges. A munkafüzet feladata azért egyszerű, mert a hasáb oldallapjai függőleges helyzetűek, így az egyenessel alkotott közös pontok látszanak az 1. képen.
    A gúlás eset már nem került be a munkafüzetbe, de érdemes megnézni, hogy itt úgy képzeljük, hogy az egyenes vonalában van egy Σ-val jelölt sík, amely egy kissé ferde metszetet készít a gúlából. Ez a metszet az 1. képen összemetsződik az egyenessel négy pontban. Mindkét képen ezek látható lapon keletkeztek, így nyomon lehet követni, ahogy az egyenes ki-be járkál a gúlából. 
  •  Ennél a feladatnál a gúla a csúcsára van állítva, így annak érdekében,hogy a lehető legtöbb részletet lássuk a síklappal való metszésből a tetején lévő négyzetlapot eltávolítjuk. Ez a metszést nem befolyásolja, de most láthatóvá válik a síklap középső része, amely a gúla belsejében van.

További segédanyag 

 

2020. október 12., hétfő

Transzformáció (2. rész)

Amikor azt tapasztaljuk, hogy egyik megadott képen sem látszik szemléletesen az ábrázolt alakzat, akkor újabb irányból kellene vetületet szerkeszteni róla. Ezen a héten éppen ennek a szerkesztésnek a lépéseit fogjuk megtanulni.
Ezt a szerkesztést kiváltja a modellező programok az a funkciója, mellyel a modell szabadon forgatható, pontosabban a nézőpont folyamatosan változtatható lesz.

Egy ide kapcsolódó példa két sík szögének meghatározása, melyhez transzformációt fogunk használni. Megfelelő irányból a keresett szög a transzformáció végén leolvasható:

A kocka után ez a csonkolt kocka lesz a feladat főszereplője:

A bejegyzés végén található a megoldás néhány lépése egy korábbi tanévben készített fotókkal szemléltetve.

Letölthető anyagok:

Segédanyagok, feladatok:

  • Gondolkodjunk el azon, hogy milyen testeknek lehet a vetülete szemből nézve is, és felülről nézve is négyzet? Milyen oldalnézetek lehetségesek?
  • Feladatok gyakorlásra
  • Táblaképek: A gyakorlaton a szerkesztés folyamatát is sikerült megörökíteni (2019):


2020. október 3., szombat

Transzformáció (1. rész)

Az ábrázolási rendszerünk meghatározza, hogy egy tárgyat, alakzatot honnan nézhetünk. A Monge-féle kétképsíkos eljárásban mindig a képsíkra merőleges irányból készült vetületekkel találkozunk. Felmerülhet a kérdés: Jó ez minden esetben?
A válasz természetesen nem. Előfordulhat, hogy a könnyen szerkeszthető nézet helyett inkább a szemléletes mellett döntenénk. De hogyan juthatunk el az egyik képből a másikba? Ez az út a képsíkrendszer transzformációja: amely röviden fogalmazva újabb vetület(ek) szerkesztését jelenti az előző kép(ek) felhasználásával.


Letölthető anyagok:

Segédanyagok, feladatok:

  • Gondolkodjunk el azon, hogy milyen testeknek lehet a vetülete szemből nézve is, és felülről nézve is négyzet? Milyen oldalnézetek lehetségesek?
  • Feladatok gyakorlásra