2024. november 20., szerda

Síklapú testek áthatása (2024-2.)

 Letölthető anyagok:

A témakör 2. feladatának teendőit mutatom be részletesebben. A hasáb bele van tolva a gúlába, se balról, se jobbról nem szakítja meg a kontúrt. Ha a kék nyilakat figyeljük, akkor 4 olyan helyet látunk, ahol a gúlaélek a hasáb oldallapjait metszik.

Ha a zöld nyilakat tekintjük, akkor a hasáb összes oldaléle belemetsz a gúlába, és így mindegyiket 2-2 metszéspont lesz majd. Egy kis gyors matek: 4 + 8 = 12 pontot kell megszerkeszteni.
A diasor leírásában a 2. és 3. lépés mutatja a hasábélekkel való metszést. Most is a hasáblapokat megnyújtjuk,hogy jó nagyon legyenek és ezzel készítünk egy-egy ferde metszetet a gúlából. Ne felejtsük el, hogy a ferde metszet már nem mutat szabályosságot, sőt az alsóbb esetben még az alapsíkban is belemetsz.


Ami nehezen szokott menni, a pontok összekötésének a sorrendje
Ehhez egy olyan segédábrát készítünk melyen mindkét test oldalsó felületeit egymásra fektetjük. Kezdjük a hasábbal! Ha a hasáb palást részét egy él mentén felvárjuk, akkor a vágás vonala a kiterítés bal és jobb oldalán is megjelenik. 

Vagyis a hasáb négy oldallapja négy sávval (azaz 5 egyenessel) szimbolizálható. Nekünk most a méretek nem kellenek,csak a sávok.
A gúla esetén is hasonló történik, azzal a különbséggel hogy oldallapok kihajtogatásával egy háromszögsorozatot kapunk. Most sem a méretek, sem a formák nem fontosak, ezért minden háromszöglap helyett sávokká formázzuk azokat. Így a négy egymáshoz csatlakozó háromszög helyett négy sávot jelenítünk meg. Itt is fontos, hogy az az él,ami mentén felvágtuk a palástot, mindkét szélen megjelenik. A vonalak egy körüljárásnak megfelelően követik egymást, hogy biztosan egy lapot jelenthessenek.
És végül tegyük egymásra ezt a két sávrendszert:
Mire lesz ez jó nekünk? Minden megszerkesztett pontot bejelölünk majd, kétféle dolgot kell megnézni: melyik élen van és melyik lapon (melyik két egyenes között) helyezkedik el. Mutatom az első pontnál, hogy mire kell figyelni. Az 1-es pont a GD oldalél és az ab lap metszéspontja. Ezt a tényt úgy érdemes átfogalmazni, hogy a GD élen van az ab egyenesek között. Stb. egyesével minden pont belekerül. Ezt minden lépésnél mutatom a diában.

Mi történik akkor, ha egy olyan éllel metszünk, amely mentén a palástot felvágtuk? Olyanra gondolok, mint a mostani példában az a egyenes. Akkor az a egyenes kétszer szerepel az összekötési ábrában is, így a pontot is kétszer kell jelölni mindkét oldalon: 

És végül az összekötés szabálya: Két pont a hálóban akkor köthető össze, ha ugyanannak a kis négyzetnek az oldalán van. Így, ha egy pontból elindulunk, akkor oda vissza fogunk érni. Ha vannak még kimaradó pontok,akkor azok legalább hárman lesznek! Most két teljes "körünk"van.

 

Síklapú testek áthatása (2024-1.)

Ezen a héten hasábokat és gúlákat fogunk metszeni egymással. Nem minden helyzettel foglalkozunk, csak azokkal, amikor a hasáb oldalélei képsíkra merőleges helyzetűek.
De először nézzük általánosabban a feladatot. Az alábbi képeken egy álló helyzetű gúla és egy fekvő helyzetű hasáb összemetsződését látjuk. A színekkel jól megjeleníthető, hogy hogyan találkoznak egymással.

De nézzük meg alaposabban! Az egyik test éle beletud metszeni a másik testbe és fordítva. Az alábbi képeken a zöld nyilak olyan pontra mutatnak, ahol a hasábéle metszi a gúla oldallapjait, és kék nyilak pedig a fordított helyzetet jelölik, amikor a gúlaélek metszik a hasáblapokat.

Az ilyen metszéspontok között jelenik a két poliéder áthatási vonala (a külső felületük összemetsződése), amely egy térbeli sokszög lesz. Ha a pontok meg is vannak, az összekötési sorrendjénél figyelnünk kell arra, hogy megfeleljen mindkét test körüljárásának, a testeket alkotó lapok metsződjenek össze és ne lépjük a testek belsejébe. Minden feladatot többféleképpen értelmezhetjük: a két test az összemetsződés után egy testté olvad össze (mint a felső ábrák), vagy az egyiküket eltávolítva a maradék csonkolt testet jelenítjük meg.
Tevékenységlista általánosan megfogalmazva:
  • Az egyik test éleivel a másik testet el kell metszeni. Célszerű a könnyen észrevehetőekkel kezdeni! Ha egy él belemetsz a másik testbe, akkor 2 metszéspontot keresünk függetlenül attól, hogy látszanak-e.
  • A másik test éleivel az első test lapjait kell metszeni, ha egy él belemetsz a másikba, akkor itt is élenként 2-2 metszésponttal kell számolni.
  • Az összekötési sorrend meghatározása: az alapszabály az, hogy mindkét testkörüljárásának meg kell felelni. Ha egy pontból elindulunk, akkor oda mindig visszavisz az áthatási töröttvonal. Ehhez segédábrát fogunk készíteni, de ha valaki meglátja a lényeget, akkor segédábra nélkül is csinálhatja.
  • A láthatóság jelölése vagy aszerint, hogy a két test egyetlen testté válik, vagy úgy, hogy ez egyik testet eltávolítjuk és ezzel a másik testen csonkolást hajtunk végre.

Letölthető anyagok:

  • Diasor pdf-ben
  • Munkafüzet 30-33. oldala 

Instrukciók:

  • A könnyen észrevehető pontok azok, melyek a gúla élek és hasáb lapok találkozásánál vannak.
  •  Hasáb függőleges élei, mint egy-egy pálca, át fogják szúrni a gúla oldallapjait. Igazság szerint egészen az alaplapig leszúrnak, de most inkább azok a pontok érdekelnek, melyek a gúla oldallapjain keletkeznek. A diasorban azt mutattam meg, hogy két szomszédos függőleges él egy lapot határoz meg, és azt a lapot megnöveljük, vagy egyszerűen oda illesztünk egy nagyobb papírlapot, és mintha egy nagy kés lenne, belevágunk a gúlába. Pl. így 

vagy így:

  • De mit is tudnak ezek a sárga síkok? Tartalmaznak két függőleges élt a hasábból és egy metszetet a gúlából. Mivel ezek ugyanabban a síkban vannak, a közös pontjaik kijelölhetők. Forgassa a fenti modelleket, hogy érezze, felülről nézve a metszetek egy-egy  vonalnak látszanak, de máshonnan nézve négyszög vagy háromszög formát mutatnak. Ennek a szerkesztését mutatja a 4.-7. dia a szerkesztés 2. és 3.lépéseként.
  • Végül össze kell kötni a kapott pontokat. Most mindkét test álló helyzetben van, így egyszerre lehet mindkettőt körüljárni. A pontok sorrendjét a felülnézet mutatja, mert ott járhatjuk körül mindkét formát egyszerre. Bármely ponttal kezdhetjük a sort, mert úgy is vissza fogunk jutni oda. Akinek segít, először leírhatja a sorrendet. A diasorban pl. én is beírtam.
 
  • A sorrendet követve összekötjük a kapott pontokat. Ez a 2. képen ezt vonalsort adja. Eddig szólt a munkafüzet 33. oldala.

 

  • A láthatóság megállapításához segédábrákat készítettem,ebből most az 1.-4. oldalak kellenek.  Egyet mutatok mintaként:



További segédanyag

2024. október 28., hétfő

Gúlák és hasábok metszése egyenessel, síkkal (2024 ősz)

Ebben a témakörben síklapú testek közül a hasábokkal és a gúlákkal kezdünk ismerkedni. A (többnyire az első képsíkon álló) testeket egyenesekkel és síkokkal (síklapokkal) fogjuk elmetszeni.

Ehhez nem kell mást ismerni, mint a korábbiakban megtanult döféspont és metszésvonal szerkesztést. Az elemek speciális helyzetének felismerése segíti, és gyorsítja a szerkesztést. A feladatok azért tűnnek nehezebbnek, mert egy ábrában több egyenes és több sík szerepel, és el kell igazodnunk közöttük. Most az eddigieknél is jobban kell használnunk a képzelőerőnket.

Forgatható modellek:

  Interaktív ábra (GeoGebra)

A GeoGebra oldalán megjelenő munkalapok bizonyos adatai a csúszkákkal szabadon változtathatóak. Az egér bármely gombjának nyomva tartása mellett az egér mozgatásával a modell forgatható.

Letölthető anyagok:

Táblakép (2020. 11. 04.)
A képre kattintva nagyobb méretben is látszik.

Néhány vázlat:

2016-ban nem sikerült jól a táblai ábrám, mert a sík csak
az oldaléleket metszette. Érdemes összehasonlítani
a fenti, 2020-as változattal!

  • A 27. oldal felső feladata éppen azt akarja megmutatni, hogy ha eltérünk a nagyon tankönyvi hasáboktól és gúláktól azzal, hogy az alapjukat "megcsipkézzük", azaz konkáv alakzatot választunk, akkor több metszéspont is lehetséges. A munkafüzet feladata azért egyszerű, mert a hasáb oldallapjai függőleges helyzetűek, így az egyenessel alkotott közös pontok látszanak az 1. képen.
    A gúlás eset már nem került be a munkafüzetbe, de érdemes megnézni, hogy itt úgy képzeljük, hogy az egyenes vonalában van egy Σ-val jelölt sík, amely egy kissé ferde metszetet készít a gúlából. Ez a metszet az 1. képen összemetsződik az egyenessel négy pontban. Mindkét képen ezek látható lapon keletkeztek, így nyomon lehet követni, ahogy az egyenes ki-be járkál a gúlából. 
  •  Ennél a feladatnál a gúla a csúcsára van állítva, így annak érdekében,hogy a lehető legtöbb részletet lássuk a síklappal való metszésből a tetején lévő négyzetlapot eltávolítjuk. Ez a metszést nem befolyásolja, de most láthatóvá válik a síklap középső része, amely a gúla belsejében van.

További segédanyag 

 


2024. október 8., kedd

A képsíkrendszer transzformációja (2024 ősz)

Az ábrázolási rendszerünk meghatározza, hogy egy tárgyat, alakzatot honnan nézhetünk. A Monge-féle kétképsíkos eljárásban mindig a képsíkra merőleges irányból készült vetületekkel találkozunk. Felmerülhet a kérdés: Jó ez minden esetben?
A válasz természetesen nem. Előfordulhat, hogy a könnyen szerkeszthető nézet helyett inkább a szemléletes mellett döntenénk. De hogyan juthatunk el az egyik képből a másikba? Ez az út a képsíkrendszer transzformációja: amely röviden fogalmazva újabb vetület(ek) szerkesztését jelenti az előző kép(ek) felhasználásával.

Amikor azt tapasztaljuk, hogy egyik megadott képen sem látszik szemléletesen az ábrázolt alakzat, akkor újabb irányból kellene vetületet szerkeszteni róla. Ebben a témakörben éppen ennek a szerkesztésnek a lépéseit fogjuk megtanulni.
Ezt a szerkesztést kiváltja a modellező programok az a funkciója, mellyel a modell szabadon forgatható, pontosabban a nézőpont folyamatosan változtatható lesz.

Egy ide kapcsolódó példa két sík szögének meghatározása, melyhez transzformációt fogunk használni. Megfelelő irányból a keresett szög a transzformáció végén leolvasható:

 A kocka után ez a csonkolt kocka lesz a feladat főszereplője:

A bejegyzés végén található a megoldás néhány lépése egy korábbi tanévben készített fotókkal szemléltetve.

Letölthető anyagok:

Segédanyagok, feladatok:

  • Gondolkodjunk el azon, hogy milyen testeknek lehet a vetülete szemből nézve is, és felülről nézve is négyzet? Milyen oldalnézetek lehetségesek?
  • Feladatok gyakorlásra
  • Táblaképek 2017-ből Ebből egy ízelítő a végső állapotról:

 



2024. szeptember 29., vasárnap

Metszési feladatok / Metszés általános helyzetű síkkal, Síkok metszése (2024)

Egy geometrikus szobor Gorinchemben (Hollandia)

Ezen a héten már inkább a két sík metszésére koncentrálunk, méghozzá olyan esetekben, amikor mindkét megadott sík általános helyzetű. A keresett metszésvonal két pontjával egyértelműen meghatározható. Így a következő megoldási menetet követjük:

  • Az egyik sík vonalai (határvonalai) közül kiválasztunk egyet, mellyel a másik síkot el fogjuk metszeni. Ezzel a két sík egy közös pontját előállítjuk.
  • Az előbbi lépést még egyszer végrehajtjuk.
  • A kapott két pontot összekötve megkapjuk a síkok metszésvonalát.
  • Láthatóság szerinti kihúzás: a síkokat síklapoknak képzeljük és megkeressük,  hogy az egyes területeken melyik sík takarja a másikat.

Fontos megjegyezni, hogy alapvetően a síklapok határvonalai közül tetszőlegesen választhatunk a közös pontok meghatározásához. Gyakorlatilag az okozhat problémát, hogy sok esetben a szerkesztés nem fér ki a megadott terület, vagy papírlapra. Ilyenkor érdemes újabb egyenessel próbálkozni. A gyakorlaton szó lesz arról is, hogy hogyan érdemes "jó" egyenest választani.


A síklapok összemetsződésének egyik példája a fenti ábrán látható.Itt most a szerkesztővonalak nincsenek feltüntetve, de a keletkezett metszésvonal igazából csak egy szakaszként jelenik meg. Itt  most az ábra azt mutatja, mintha a két bemetszett lapot csak összecsúsztatnánk, hogy egymásba kapjanak, ahhoz hasonlóan, mint a korong alakú építőjáték elemi csatlakoznak.

Egy másik esetben a kész ábra ahhoz hasonló, mint amikor az egyik lapon egy hasítékot készítünk, hogy ott a másik síklapot átcsúsztassuk, vagy csak egy részét belecsúsztassuk. Ilyesmit szemléltet a jobb oldali képen látható szalag, melyen van egy elszegett rés, és a szalag végei azon átcsúsztathatók. Persze ilyen szalagot nem fogunk ábrázolni, de a lényeget jól szemlélteti.

Az órán használtuk a fedőegyenes-módszert a 2. képről indítva. Csak azért, hogy erről is legyen valamilyen segédábra, egy interaktív verziót mutatok:

 

Röviden a következőt kell figyelni: A ciklámen síklapot szeretnénk metszeni a zöld egyenessel. A síklap képe a 2. képsíkon látható háromszöglap, az egyenes képét a halványkék sík rajzolja ki.  A halványkék sík a zöld egyenes a K2-re vetítő sík, amely a térben elmetszi a háromszög síkját, én azon kirajzolja a fekete egyenest. Ha forgatjuk az ábrát, akkor azt tapasztaljuk, hogy a zöld és fekete egyeneseknek közös a 2.képük (szemből nézet), de minden más helyzetből metszőnek látjuk azokat. Mutatom, hogy hogyan néznek ki, amikor csak a vetületeket látjuk (tulajdonképpen a szerkesztést látjuk rendező vonalak nélkül):

 Letölthető anyagok:

Táblai feladatmegoldások a korábbi évekből:

További segédanyag