2025. április 1., kedd

Forgásfelületek keletkezése és metszésük egyenessel

A forgásfelületek elnevezés egy összefoglaló név minden olyan felületre, amely egy görbe egy adott tengely körüli megforgatásával keletkezik. A forgatás az egyik gyakran alkalmazott módszer különböző formák alakjának modellezésére, a szoftverek többnyire Rotate, Revolution, Revolved Boss/Base parancsokat használnak a generálásukra.

Felületek előállítását szemléltető eszköz a MoMath matematikai múzeumban.

Ha a megforgatandó görbe alakját figyeljük, akkor az többnyire egy hullámzó vonal lehet, ha pl. egy váza formáját keressük. De mérnöki alkalmazásokban alapelemként olyan felületeket használnak, melyek egyenes vagy kör megforgatásával keletkeznek. 


Letölthető anyagok:

  • Diasor 
  • Munkafüzet2025 45.-50. oldala
  • A diasor animált ábrái elérhetők ITT  
A henger és a kúp vonalfelületek, ami azt jelenti, hogy a felület minden pontján áthalad egy egyenes, vagy annak egy szakasza. Az ábrázolásoknál kerüljük a végtelenbe futó felületdarabokat, ezért mindig adott magasságú hengerrel és kúppal fogunk találkozni. Jellemzőjük, hogy síkba fejthetők, azaz síklapra szerkesztett hálójuk alapján papírmodelljeik előkészítők.
 A henger és a kúp  esetén közös tulajdonság az, hogy a felületi pontok keresése kétféle módszerrel valósítható meg: paralelkörrel vagy alkotóval. Az alkotó megjelenítése ahhoz hasonló, amikor a hasáb/gúla oldalélét rajzoltuk meg. És ez nem véletlen, hiszen ha növeljük a hasáb/gúla oldaléleinek és ezzel az oldallapjainak a számát, akkor az oldalfelület elkezd kisimulni, és végül hengert/kúpot kapunk.

A paralelkör megjelenése ahhoz hasonló, amikor a hasábokat/gúlákat egy adott magasságban elmetszettük egy vízszintes síkkal. A henger esetén mindig azonos méretű metszeteket kapunk, míg a kúp esetén a csúcs felé haladva egyre kisebbeket. Ezek a modern mászókák elég jól szemléltetik ezt a tényt.
Nagyon fontos, hogy minden felületi ponton át egy alkotó és egy paralelkör vehető fel!


A gömb és a tórusz kör megforgatásával keletkezik, a gömb esetén a forgástengely áthalad a kör középpontján, míg a tórusz esetében nem. A felületi pontok megadásakor a meridiánmetszet nem igazán használható, mivel ezek többnyire ellipszisként látszanának. Így csak a forgástengelyre merőleges metszetek, azaz a paralelkörök használhatók.
A tórusz esetén többnyire a lyukas "változatát" ábrázoljuk, amely hasonlít az úszógumi, biciklibelső formájához, vagy éppen az amerikai fánk alakjához.
A  tórusz felületére való pontillesztést az 1. képről indítva is szerkeszthetjük.  A lépéseket bemutató videó elérhető itt..

Továbbá fontos, hogy emlékezzünk arra, hogy a gömb bármely síkmetszete kör, csaknem minden esetben fog körnek látszani. Ha a metsző sík egyik képsíkkal sem párhuzamos, akkor a metszet vetülete ellipszis lesz.
Ha már a modern mászókákat hívtam segítségül, akkor megmutatom,hogy milyen volt a gyermekkorom játszótere. Ilyen gömbmászókán lógtunk, ha a rakétát a fiúk elfoglalták:
A hosszanti cikkek (olyanok,mint a narancsgerezdek) határai éppen a meridiánmetszetek, és néhány magasságban megvannak a paralelkörök is. A mászóka fokai pedig egyenes szakaszokkal íveket helyettesítettek.
Hasonló ötlet 48. oldal feladatának megoldást szemlélteti. És mi is a lényeg? Ha egy gömböt egy egyenessel el akarunk metszeni, akkor az egyenesre bárhogy is illesztünk síkot, akkor a gömb metszete éppen a keresett szúráspontokban metszi az egyenest.

Csak nem mindegy, hogy hogyan vesszük fel a síkot! Ha függőleges síkkal metszünk, akkor a metszet könnyen leforgatható. Az alábbi animált ábra éppen a szerkesztést mutatja be: http://fluid.itcmp.pwr.wroc.pl/~eichler/kula-pr/img/anim-k-pr.gif 

Ebben az esetben kérdés:
Milyen magasan kell keresni a gömbből függőleges síkkal metszett  kör középpontját? Már az almás kép is mutatja, hogy a metszetek nem csúszkálnak el, le, hanem egy adott magasságban maradnak.

Hasznos segítség:

 



2025. március 24., hétfő

Gúlák és hasábok áthatása - amikor a hasáb nincs vetítő helyzetben

Felhasznált korábbi ismeretek:

  • Transzformáció, mellyel elérhető, hogy egy hasáb élei (oldallapjai) az új képsíkra merőlegesek legyenek. Ebben az új nézetben eldönthető, hogy hány pont határozza meg az áthatási töröttvonalat.
  • Vetítősík és egyenes döféspontjának szerkesztése. A metszéspont az egyik képen azonnal látható, a másik kép rendezővel szerkeszthető.
  • Síkra illeszkedő egyenes: a sík körvonalát két pontban metszi, és ezt a rendezők is mutatják.
  • Síkok metszésvonala. Két közös pont által megadva, speciális helyzetekben is.
Letölthető anyagok:
  • Diasor pdf-ben (67. oldaltól)
  • Munkafüzet2025  38-39. oldala
Bevezetésként nézzünk egy nem túl bonyolult példát! Az alábbi ábrán egyik test sincs vetítő helyzetben:
(Forrás:bme.hu)
És látjuk a megoldást is: a vetítő helyzetet egyetlen transzformációval lehet elérni, amelyben a fekvő helyzetű hasáb oldalélei vetítőegyenesekké válnak. A transzformációt CSAK ez a hasáb fogja meghatározni, az x14 tengely merőleges a hasáb oldaléleinek első képére. Ezt követi a transzformáció végrehajtása, és ekkor kapjuk meg azt a kedvezőbb vetületet, amelyben látszik, hogy összesen hány pontot kell  megszerkesztenünk. Az I. és IV. kép felhasználásával az áthatás minden pontja megszerkeszthető, a II. képet a transzformáció visszafelé történő alkalmazásával szerkesztjük.

A feladatunk első lépése is a transzformáció lesz.

Magát a transzformációs lépéseket nem részletezném, mert már megtanultuk. A végeredmény azt mutatja, hogy a hasáb egyetlen háromszögként jelenik meg, amely körül látjuk a gúla vetületét.
Most lehet átnézni a teendőket:
  • A hasáb mindhárom oldaléle (mint pontoknak látszó egyenesek) a gúla kontúrján belül van ---> élenként 2-2 metszéspontot kell szerkeszteni.
  • A gúla MA és MB élei elkerülik a hasábot,csak az MC él metsz bele ---> 2 metszéspontot kell szerkeszteni. (Erre még később kitérünk, mert itt különlegesebb helyzet állt elő!)
  • Tehát 6 + 2 pontot kell szerkeszteni az 1.képre is és a 2. képre is a IV. képből kiindulva.
  • Összekötés: a szabály alapján az 1. képen is és a 2. képen is összekötjük a pontokat. 
  • Láthatóság szerinti kihúzás
A lépésekhez a diasor lépéseit kell követni, néhány pillanatképek most ki is emelek:
  • Metszés az MC egyenessel. Az 1. és IV. kép vonatkozásában ez az él nagyon meredeken fut, majdnem merőleges a az x14 tengelyre. Ebben az esetben nem tanácsos a rendezőket használni, hogy az1' és 2' pontokat megkeressük! Figyeljék csak a zöld rendező vonalakat! Nagyon közel futnak egymáshoz és nagyon kis szögben fogják metszeni az M'C' élt. Szinte biztos, hogy kézi szerkesztéssel elmozdulnak a pontok arról a helyről, ahol lenniük kellene. Ezt csak akkor lehetne észrevenni, amikor a 2. képeket is meghatároznánk, és a pontok nem lennének benne a hasábban.
  • Inkább így oldjuk meg:
 
És végül a 2.képről rendezőket indítva jelöljük ki az 1' és 2' pontokat.
  • A szerkesztés folytatására a következőket ajánlom:
 
  • Fontos, hogy a fenti kezdésekkel a 3' és 4' pontok kétszer is meghatározásra kerülnek, DE NEM LESZ BELŐLÜK 2 DB! A b egyenesnek csak két közös pontja lehet a gúlával. Ha pontosan dolgoznak, akkor a két háromszög formájú metszet a 3' és 4' pontokban metszi egymást.
Gyakorló feladat:
  • Egy feladat (Gyakorló feladatok / Hasábok és gúlák áthatása / 8. oldal) megoldása, ahol a hasáb vízszintes éleivel való metszéseket vízszintes vágásokkal szerkesztették és nem azzal a módszerrel, hogy a hasáb lapot hosszabbítottuk meg. A megoldás után a test lapjait különböző színekkel jelölték, ami segít abban, hogy melyik lapot láthatjuk.A kék, barna, piros lapok mindkét képen látszanak, a sárga és a zöld pedig hátrafelé fordulnak, így nem láthatók szemből.
  • Ugyanennek a feladatnak a megoldása táblaképeken, lépésekben: